Tuesday, January 13, 2009

Computer Network

1 Introduction to Computer Networks
2 Network Classification
2.2 Connection method
2.3 Functional relationship (Network Architectures)2.4 Network
3 Types of networks
3.1 Personal Area Network (PAN
3.2 Local Area Network (LAN
3.3 Campus Area Network (CAN)
3.5 Wide Area Network (WAN)/div>
3.6 Global Area Network (GAN
3.7 Virtual Private Network (VPN
3.8 Internetwork
3.8.1 Intranet
3.8.2 Extranet
3.8.3 Internet
4 Basic Hardware Components
4.1 Network Interface Cards
4.2 Repeaters
4.3 Hubs
4.4 Bridges
4.5 Switches
4.6 Routers

A computer network is a group of interconnected computers Networks may be classified according to a wide variety of characteristics. This article provides a general overview of some types and categories and also presents the basic components of a network.

Introduction to Computer Networks
A network is a collection of computers connected to each other. The network allows computers to communicate with each other and share resources and information. The Advance Research Projects Agency (ARPA) designed "Advanced Research Projects Agency Network" (ARPANET) for the United States Department of Defense. It was the first computer network in the world in late 1960's and early 1970's
Network Classification
The following list presents categories used for classifying networks.
caleBased on their scale, networks can be classified as Local Area Network (LAN), Wide Area Network (WAN), Metropolitan Area Network (MAN), Personal Area Network (PAN), Virtual Private Network (VPN), Campus Area Network (CAN), Storage Area Network (SAN), etc.

Connection method
Computer networks can also be classified according to the hardware and software technology that is used to interconnect the individual devices in the network, such as
Optical fiber, Ethernet, Wireless LAN, HomePNA, or Power line communication.
Ethernet uses physical wiring to connect devices. Frequently deployed devices include hubs, switches, bridges and/or routers.
Wireless LAN technology is designed to connect devices without wiring. These devices use
radio waves or infrared signals as a transmission medium.

Functional relationship (Network Architectures)
Computer networks may be classified according to the functional relationships which exist among the elements of the network, e.g.,
Active Networking, Client-server and Peer-to-peer (workgroup) architecture.

Network topology
Main article:
Network Topology
Computer networks may be classified according to the
network topology upon which the network is based, such as Bus network, Star network, Ring network, Mesh network, Star-bus network, Tree or Hierarchical topology network.
Network Topology signifies the way in which devices in the network see their logical relations to one another. The use of the term "logical" here is significant. That is, network topology is independent of the "physical" layout of the network. Even if networked computers are physically placed in a linear arrangement, if they are connected via a hub, the network has a Star topology, rather than a Bus Topology. In this regard the visual and operational characteristics of a network are distinct; the logical network topology is not necessarily the same as the physical layout. Networks may be classified based on the method of data used to convey the data, these include digital and analog networks.

Types of networks
Below is a list of the most common types of computer networks in order of scale.
Personal Area Network (PAN)
Main article:
Personal area network

A Personal Area Network (PAN) is a computer network used for communication among computer devices close to one person. Some examples of devices that are used in a PAN are printers, fax machines, telephones, PDAs and scanners. The reach of a PAN is typically about 20-30 feet (approximately 6-9 meters), but this is expected to increase with technology improvements.

Local Area Network (LAN)
Local Area Network (LAN) is a computer network covering a small physical area, like a home, office, or small group of buildings, such as a school, or an airport. Current LANs are most likely to be based on Ethernet technology. For example, a library may have a wired or wireless LAN for users to interconnect local devices (e.g., printers and servers) and to connect to the internet. On a wired LAN, PCs in the library are typically connected by category 5 (Cat5) cable, running the IEEE 802.3 protocol through a system of interconnected devices and eventually connect to the Internet. The cables to the servers are typically on Cat 5e enhanced cable, which will support IEEE 802.3 at 1 Gbit/s. A wireless LAN may exist using a different IEEE protocol, 802.11b, 802.11g or possibly 802.11n. The staff computers (bright green in the figure) can get to the color printer, checkout records, and the academic network and the Internet. All user computers can get to the Internet and the card catalog. Each workgroup can get to its local printer. Note that the printers are not accessible from outside their workgroup.
Typical library network, in a branching tree topology and controlled access to resources
All interconnected devices must understand the network layer (layer 3), because they are handling multiple subnets (the different colors). Those inside the library, which have only 10/100 Mbit/s Ethernet connections to the user device and a Gigabit Ethernet connection to the central router, could be called "layer 3 switches" because they only have Ethernet interfaces and must understand
IP. It would be more correct to call them access routers, where the router at the top is a distribution router that connects to the Internet and academic networks' customer access routers.
The defining characteristics of LANs, in contrast to WANs (wide area networks), include their higher data transfer rates, smaller geographic range, and lack of a need for leased telecommunication lines. Current Ethernet or other
IEEE 802.3 LAN technologies operate at speeds up to 10 Gbit/s. This is the data transfer rate. IEEE has projects investigating the standardization of 100 Gbit/s, and possibly 40 Gbit/s.

Campus Area Network (CAN)
Main article:
Campus Area Network
A Campus Area Network (CAN) is a computer network made up of an interconnection of local area networks (LANs) within a limited geographical area. It can be considered one form of a metropolitan area network, specific to an academic setting.
In the case of a university campus-based campus area network, the network is likely to link a variety of campus buildings including; academic departments, the university library and student residence halls. A campus area network is larger than a local area network but smaller than a wide area network (WAN), (in some cases).
The main aim of a campus area network is to facilitate students accessing internet and university resources. This is a network that connects two or more LANs but that is limited to a specific and contiguous geographical area such as a college campus, industrial complex, office building, or a military base. A CAN may be considered a type of MAN (metropolitan area network), but is generally limited to a smaller area than a typical MAN. This term is most often used to discuss the implementation of networks for a contiguous area. This should not be confused with a
Controller Area Network. A LAN connects network devices over a relatively short distance. A networked office building, school, or home usually contains a single LAN, though sometimes one building will contain a few small LANs (perhaps one per room), and occasionally a LAN will span a group of nearby buildings. In TCP/IP networking, a LAN is often but not always implemented as a single IP subnet.

Metropolitan Area Network (MAN)
Main article:
Metropolitan Area Network
A Metropolitan Area Network (MAN) is a network that connects two or more Local Area Networks or Campus Area Networks together but does not extend beyond the boundaries of the immediate town/city. Routers, switches and hubs are connected to create a Metropolitan Area Network.

Wide Area Network (WAN)
A Wide Area Network (WAN) is a computer network that covers a broad area (i.e., any network whose communications links cross metropolitan, regional, or national boundaries [1]). Less formally, a WAN is a network that uses routers and public communications links [1]. Contrast with personal area networks (PANs), local area networks (LANs), campus area networks (CANs), or metropolitan area networks (MANs) which are usually limited to a room, building, campus or specific metropolitan area (e.g., a city) respectively. The largest and most well-known example of a WAN is the Internet. A WAN is a data communications network that covers a relatively broad geographic area (i.e. one city to another and one country to another country) and that often uses transmission facilities provided by common carriers, such as telephone companies. WAN technologies generally function at the lower three layers of the OSI reference model: the physical layer, the data link layer, and the network layer.

Global Area Network (GAN)
Main article:
Global Area Network
A Global Area networks (GAN) specifications are in development by several groups, and there is no common definition. In general, however, a GAN is a model for supporting mobile communications across an arbitrary number of wireless LANs, satellite coverage areas, etc. The key challenge in mobile communications is "handing off" the user communications from one local coverage area to the next. In IEEE Project 802, this involves a succession of terrestrial Wireless local area networks (WLAN).[1]

Virtual Private Network (VPN)
A Virtual Private Network (VPN) is a computer network in which some of the links between nodes are carried by open connections or virtual circuits in some larger network (e.g., the Internet) instead of by physical wires. The link-layer protocols of the virtual network are said to be tunneled through the larger network when this is the case. One common application is secure communications through the public Internet, but a VPN need not have explicit security features, such as authentication or content encryption. VPNs, for example, can be used to separate the traffic of different user communities over an underlying network with strong security features.
A VPN may have best-effort performance, or may have a defined service level agreement (SLA) between the VPN customer and the VPN service provider. Generally, a VPN has a topology more complex than point-to-point.
A VPN allows computer users to appear to be editing from an IP address location other than the one which connects the actual computer to the Internet.

Main article:
ernetworking involves connecting two or more distinct computer networks or network segments via a common routing technology. The result is called an internetwork (often shortened to internet). Two or more networks or network segments connected using devices that operate at layer 3 (the 'network' layer) of the OSI Basic Reference Model, such as a router. Any interconnection among or between public, private, commercial, industrial, or governmental networks may also be defined as an internetwork.
In modern practice, the interconnected networks use the Internet Protocol. There are at least three variants of internetwork, depending on who administers and who participates in them:
Intranets and extranets may or may not have connections to the Internet. If connected to the Internet, the intranet or extranet is normally protected from being accessed from the Internet without proper authorization. The Internet is not considered to be a part of the intranet or extranet, although it may serve as a portal for access to portions of an extranet.

Main article:
An intranet is a set of networks, using the Internet Protocol and IP-based tools such as web browsers and file transfer applications, that is under the control of a single administrative entity. That administrative entity closes the intranet to all but specific, authorized users. Most commonly, an intranet is the internal network of an organization. A large intranet will typically have at least one web server to provide users with organizational information.

Main article:
An extranet is a network or internetwork that is limited in scope to a single organization or entity but which also has limited connections to the networks of one or more other usually, but not necessarily, trusted organizations or entities (e.g. a company's customers may be given access to some part of its intranet creating in this way an extranet, while at the same time the customers may not be considered 'trusted' from a security standpoint). Technically, an extranet may also be categorized as a CAN, MAN, WAN, or other type of network, although, by definition, an extranet cannot consist of a single LAN; it must have at least one connection with an external network.

Main article:
The Internet is a specific internetwork. It consists of a worldwide interconnection of governmental, academic, public, and private networks based upon the networking technologies of the Internet Protocol Suite. It is the successor of the Advanced Research Projects Agency Network (ARPANET) developed by DARPA of the U.S. Department of Defense. The Internet is also the communications backbone underlying the World Wide Web (WWW). The 'Internet' is most commonly spelled with a capital 'I' as a proper noun, for historical reasons and to distinguish it from other generic internetworks.
Participants in the Internet use a diverse array of methods of several hundred documented, and often standardized, protocols compatible with the
Internet Protocol Suite and an addressing system (IP Addresses) administered by the Internet Assigned Numbers Authority and address registries. Service providers and large enterprises exchange information about the reachability of their address spaces through the Border Gateway Protocol (BGP), forming a redundant worldwide mesh of transmission paths.

Basic Hardware Components
All networks are made up of basic hardware building blocks to interconnect network
Main article: Network card
Main article:
A repeater is an electronic device that receives a signal and retransmits it at a higher power level, or to the other side of an obstruction, so that the signal can cover longer distances without degradation. In most twisted pair ethernet configurations, repeaters are required for cable runs longer than 100 meters away from the computer.

Main article:
Network hub
A hub contains multiple ports. When a packet arrives at one port, it is copied to all the ports of the hub for transmission. When the packets are copied, the destination address in the frame does not change to a broadcast address. It does this in a rudimentary way: It simply copies the data to all of the Nodes connected to the hub.[2]

Main article:
Network bridge
A network bridge connects multiple
network segments at the data link layer (layer 2) of the OSI model. Bridges do not promiscuously copy traffic to all ports, as hubs do, but learn which MAC addresses are reachable through specific ports. Once the bridge associates a port and an address, it will send traffic for that address only to that port. Bridges do send broadcasts to all ports except the one on which the broadcast was received.
Bridges learn the association of ports and addresses by examining the source address of frames that it sees on various ports. Once a frame arrives through a port, its source address is stored and the bridge assumes that MAC address is associated with that port. The first time that a previously unknown destination address is seen, the bridge will forward the frame to all ports other than the one on which the frame arrived.
Bridges come in three basic types:
Local bridges: Directly connect local area networks (LANs)
Remote bridges: Can be used to create a wide area network (WAN) link between LANs. Remote bridges, where the connecting link is slower than the end networks, largely have been replaced by routers.
Wireless bridges: Can be used to join LANs or connect remote stations to LANs.

Main article:
Network switch
A switch is a device that performs switching. Specifically, it forwards and filters
OSI layer 2 datagrams (chunk of data communication) between ports (connected cables) based on the MAC addresses in the packets.[3] This is distinct from a hub in that it only forwards the datagrams to the ports involved in the communications rather than all ports connected. Strictly speaking, a switch is not capable of routing traffic based on IP address (layer 3) which is necessary for communicating between network segments or within a large or complex LAN. Some switches are capable of routing based on IP addresses but are still called switches as a marketing term. A switch normally has numerous ports, with the intention being that most or all of the network is connected directly to the switch, or another switch that is in turn connected to a switch.[4]
Switch is a marketing term that encompasses routers and bridges, as well as devices that may distribute traffic on load or by application content (e.g., a Web
URL identifier). Switches may operate at one or more OSI model layers, including physical, data link, network, or transport (i.e., end-to-end). A device that operates simultaneously at more than one of these layers is called a multilayer switch.
Overemphasizing the ill-defined term "switch" often leads to confusion when first trying to understand networking. Many experienced network designers and operators recommend starting with the logic of devices dealing with only one protocol level, not all of which are covered by OSI. Multilayer device selection is an advanced topic that may lead to selecting particular implementations, but multilayer switching is simply not a real-world design concept.

Routers Main article: Router
Routers are networking devices that forward data packets between networks using headers and forwarding tables to determine the best path to forward the packets. Routers work at the
network layer of the TCP/IP model or layer 3 of the OSI model. Routers also provide interconnectivity between like and unlike media (RFC 1812). This is accomplished by examining the Header of a data packet, and making a decision on the next hop to which it should be sent (RFC 1812) They use preconfigured static routes, status of their hardware interfaces, and routing protocols to select the best route between any two subnets. A router is connected to at least two networks, commonly two LANs or WANs or a LAN and its ISP's network. Some DSL and cable modems, for home (and even office) use, have been integrated with routers to allow multiple home/office computers to access the Internet through the same connection. Many of these new devices also consist of wireless access points (waps) or wireless routers to allow for IEEE 802.11g/b/n wireless enabled devices to connect to the network without the need for cabled connections.
types of the computer networking
There are two main types of the computer networking client-server and peer to peer. In the client server computing, a computer plays a major role known as server, where the files, data in the form of web pages, docs or spread sheet files, video, database & resources are placed.
All the other computers in the client/server networks are called clients and they get the data from the server. In the peer to peer networks all the computers play the same role and no computer act as a centralized server. In the major businesses around the world client-server networks model is in major use.
A network topology defines the structure, design or layout of a network. There are different topologies like bus, ring, star, mesh, hybrid etc. The star topology is most commonly used topology. In the star topology, all the computers in the network are connected with a centralized device such as hub or switch. Thus forms a star like structure. If the hubs/switch fails to work for any reason then all the connectivity and communication between the computers will be halted.
A common communication language is used by the computers and the communication devices is known as protocols. The most commonly used and popular protocol on the internet and in the home and other networks is called TCP/IP. TCP/IP is not a single protocol but it is a suite of several protocols.A computer network can be a wired or wireless and TCP/IP protocol can work both in types of a network.Data flow or communication can be divided into seven logical layers called OSI layers model that was developed by Intel and Xerox Corporation and was standardized by ISO.
1. Application layer 2. Presentation layer3. Session layer4. Transport layer 5. Network layer 6. Data Link layer a. Media access control sub-layer b. Logical link control sub-layer 7. Physical layerA network can be divided into different scales and ranges and it depends on the requirement of the organization and the geographical location. Computer Network can be divided into Local Area Network, Personal Area Network, Campus Area Network, Wireless Local Area Network, Metropolitan Area Network and Wide Area Network.There are several communication connection methods like HomePNA, Power line communication, Ethernet and Wifi connection method.A network can also be categorized into several different types based on the services it provides like Server farms, Storage area networks, Value control networks, Value-Added networks, SOHO networks, Wireless and Jungle networks.
Building a simple computer network

A simple computer network may be constructed from two computers by adding a network adapter (Network Interface Controller (NIC)) to each computer and then connecting them together with a special cable called a crossover cable. This type of network is useful for transferring information between two computers that are not normally connected to each other by a permanent network connection or for basic home networking applications. Alternatively, a network between two computers can be established without dedicated extra hardware by using a standard connection such as the RS-232 serial port on both computers, connecting them to each other via a special crosslinked null modem cable.
Practical networks generally consist of more than two interconnected computers and generally require special devices in addition to the Network Interface Controller that each computer needs to be equipped with. Examples of some of these special devices are hubs, switches and routers.
Ancillary equipment used by networks
To keep a network operating, to diagnose failures or degradation, and to circumvent problems, networks may have a wide-ranging amount of ancillary equipment.
Providing Electrical Power
Individual network components may have surge protectors - an appliance designed to protect electrical devices from voltage spikes. Surge protectors attempt to regulate the voltage supplied to an electric device by either blocking or shorting to ground voltage above a safe threshold.
Beyond the surge protector, network elements may have uninterruptible power supplies (UPS), which can be anywhere from a line-charged battery to take the element through a brief power dropout, to an extensive network of generators and large battery banks that can protect the network for hours or days of commercial power outages.
A network as simple as two computers linked with a crossover cable has several points at which the network could fail: either network interface, and the cable. Large networks, without careful design, can have many points at which a single failure could disable the network.
When networks are critical the general rule is that they should have no single point of failure. The broad factors that can bring down networks, according to the Software Engineering Institute at Carnegie-Mellon University:
Attacks: these include software attacks by various miscreants (e.g., malicious hackers, computer criminals) as well as physical destruction of facilities.
Failures: these are in no way deliberate, but range from human error in entering commands, bugs in network element executable code, failures of electronic components, and other things that involve deliberate human action or system design.
Accidents: Ranging from spilling coffee into a network element to a natural disaster or war that destroys a data center, these are largely unpredictable events. Survivability from severe accidents will require physically diverse, redundant facilities. Among the extreme protections against both accidents and attacks are airborne command posts and communications relays[7], which either are continuously in the air, or take off on warning. In like manner, systems of communications satellites may have standby spares in space, which can be activated and brought into the constellation.
Dealing with Power Failures
One obvious form of failure is the loss of electrical power. Depending on the criticality and budget of the network, protection from power failures can range from simple filters against excessive voltage spikes, to consumer-grade Uninterruptible Power Supplies(UPS) that can protect against loss of commercial power for a few minutes, to independent generators with large battery banks. Critical installations may switch from commercial to internal power in the event of a brownout,where the voltage level is below the normal minimum level specified for the system. Systems supplied with three-phase electric power also suffer brownouts if one or more phases are absent, at reduced voltage, or incorrectly phased. Such malfunctions are particularly damaging to electric motors. Some brownouts, called voltage reductions, are made intentionally to prevent a full power outage.
Some network elements operate in a manner to protect themselves and shut down gracefully in the event of a loss of power. These might include noncritical application and network management servers, but not true network elements such as routers. UPS may provide a signal called the "Power-Good" signal. Its purpose is to tell the computer all is well with the power supply and that the computer can continue to operate normally. If the Power-Good signal is not present, the computer shuts down. The Power-Good signal prevents the computer from attempting to operate on improper voltages and damaging itself
To help standardize approaches to power failures, the Advanced Configuration and Power Interface (ACPI) specification is an open industry standard first released in December 1996 developed by HP, Intel, Microsoft, Phoenix and Toshiba that defines common interfaces for hardware recognition, motherboard and device configuration and power management.
Monitoring and Diagnostic Equipment
Networks, depending on their criticality and the skill set available among the operators, may have a variety of temporarily or permanently connected performance measurement and diagnostic equipment. Routers and bridges intended more for the enterprise or ISP market than home use, for example, usually record the amount of traffic and errors experienced on their interfaces.

1 comment: